Copied to
clipboard

G = C42×3- 1+2order 432 = 24·33

Direct product of C42 and 3- 1+2

direct product, metacyclic, nilpotent (class 2), monomial

Aliases: C42×3- 1+2, C364C12, C3.2C122, C122.3C3, (C4×C36)⋊3C3, C92(C4×C12), C32.(C4×C12), C6.11(C6×C12), (C6×C12).17C6, (C2×C36).10C6, C12.14(C3×C12), (C3×C12).12C12, C18.10(C2×C12), (C2×C6).25C62, (C4×C12).7C32, C62.32(C2×C6), C22.2(C22×3- 1+2), (C22×3- 1+2).13C22, (C2×C18).15(C2×C6), (C3×C6).27(C2×C12), (C2×C12).29(C3×C6), C2.1(C2×C4×3- 1+2), (C2×C4×3- 1+2).10C2, (C2×C4).4(C2×3- 1+2), (C2×3- 1+2).10(C2×C4), SmallGroup(432,202)

Series: Derived Chief Lower central Upper central

C1C3 — C42×3- 1+2
C1C3C6C2×C6C62C22×3- 1+2C2×C4×3- 1+2 — C42×3- 1+2
C1C3 — C42×3- 1+2
C1C4×C12 — C42×3- 1+2

Generators and relations for C42×3- 1+2
 G = < a,b,c,d | a4=b4=c9=d3=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

Subgroups: 150 in 120 conjugacy classes, 105 normal (12 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2×C4, C9, C32, C12, C12, C2×C6, C2×C6, C42, C18, C3×C6, C2×C12, C2×C12, 3- 1+2, C36, C2×C18, C3×C12, C62, C4×C12, C4×C12, C2×3- 1+2, C2×C36, C6×C12, C4×3- 1+2, C22×3- 1+2, C4×C36, C122, C2×C4×3- 1+2, C42×3- 1+2
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C32, C12, C2×C6, C42, C3×C6, C2×C12, 3- 1+2, C3×C12, C62, C4×C12, C2×3- 1+2, C6×C12, C4×3- 1+2, C22×3- 1+2, C122, C2×C4×3- 1+2, C42×3- 1+2

Smallest permutation representation of C42×3- 1+2
On 144 points
Generators in S144
(1 128 52 142)(2 129 53 143)(3 130 54 144)(4 131 46 136)(5 132 47 137)(6 133 48 138)(7 134 49 139)(8 135 50 140)(9 127 51 141)(10 39 20 34)(11 40 21 35)(12 41 22 36)(13 42 23 28)(14 43 24 29)(15 44 25 30)(16 45 26 31)(17 37 27 32)(18 38 19 33)(55 105 69 91)(56 106 70 92)(57 107 71 93)(58 108 72 94)(59 100 64 95)(60 101 65 96)(61 102 66 97)(62 103 67 98)(63 104 68 99)(73 118 82 109)(74 119 83 110)(75 120 84 111)(76 121 85 112)(77 122 86 113)(78 123 87 114)(79 124 88 115)(80 125 89 116)(81 126 90 117)
(1 56 40 88)(2 57 41 89)(3 58 42 90)(4 59 43 82)(5 60 44 83)(6 61 45 84)(7 62 37 85)(8 63 38 86)(9 55 39 87)(10 123 141 91)(11 124 142 92)(12 125 143 93)(13 126 144 94)(14 118 136 95)(15 119 137 96)(16 120 138 97)(17 121 139 98)(18 122 140 99)(19 113 135 104)(20 114 127 105)(21 115 128 106)(22 116 129 107)(23 117 130 108)(24 109 131 100)(25 110 132 101)(26 111 133 102)(27 112 134 103)(28 81 54 72)(29 73 46 64)(30 74 47 65)(31 75 48 66)(32 76 49 67)(33 77 50 68)(34 78 51 69)(35 79 52 70)(36 80 53 71)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 25 22)(20 23 26)(28 31 34)(30 36 33)(38 44 41)(39 42 45)(47 53 50)(48 51 54)(55 58 61)(57 63 60)(65 71 68)(66 69 72)(74 80 77)(75 78 81)(83 89 86)(84 87 90)(91 94 97)(93 99 96)(101 107 104)(102 105 108)(110 116 113)(111 114 117)(119 125 122)(120 123 126)(127 130 133)(129 135 132)(137 143 140)(138 141 144)

G:=sub<Sym(144)| (1,128,52,142)(2,129,53,143)(3,130,54,144)(4,131,46,136)(5,132,47,137)(6,133,48,138)(7,134,49,139)(8,135,50,140)(9,127,51,141)(10,39,20,34)(11,40,21,35)(12,41,22,36)(13,42,23,28)(14,43,24,29)(15,44,25,30)(16,45,26,31)(17,37,27,32)(18,38,19,33)(55,105,69,91)(56,106,70,92)(57,107,71,93)(58,108,72,94)(59,100,64,95)(60,101,65,96)(61,102,66,97)(62,103,67,98)(63,104,68,99)(73,118,82,109)(74,119,83,110)(75,120,84,111)(76,121,85,112)(77,122,86,113)(78,123,87,114)(79,124,88,115)(80,125,89,116)(81,126,90,117), (1,56,40,88)(2,57,41,89)(3,58,42,90)(4,59,43,82)(5,60,44,83)(6,61,45,84)(7,62,37,85)(8,63,38,86)(9,55,39,87)(10,123,141,91)(11,124,142,92)(12,125,143,93)(13,126,144,94)(14,118,136,95)(15,119,137,96)(16,120,138,97)(17,121,139,98)(18,122,140,99)(19,113,135,104)(20,114,127,105)(21,115,128,106)(22,116,129,107)(23,117,130,108)(24,109,131,100)(25,110,132,101)(26,111,133,102)(27,112,134,103)(28,81,54,72)(29,73,46,64)(30,74,47,65)(31,75,48,66)(32,76,49,67)(33,77,50,68)(34,78,51,69)(35,79,52,70)(36,80,53,71), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(28,31,34)(30,36,33)(38,44,41)(39,42,45)(47,53,50)(48,51,54)(55,58,61)(57,63,60)(65,71,68)(66,69,72)(74,80,77)(75,78,81)(83,89,86)(84,87,90)(91,94,97)(93,99,96)(101,107,104)(102,105,108)(110,116,113)(111,114,117)(119,125,122)(120,123,126)(127,130,133)(129,135,132)(137,143,140)(138,141,144)>;

G:=Group( (1,128,52,142)(2,129,53,143)(3,130,54,144)(4,131,46,136)(5,132,47,137)(6,133,48,138)(7,134,49,139)(8,135,50,140)(9,127,51,141)(10,39,20,34)(11,40,21,35)(12,41,22,36)(13,42,23,28)(14,43,24,29)(15,44,25,30)(16,45,26,31)(17,37,27,32)(18,38,19,33)(55,105,69,91)(56,106,70,92)(57,107,71,93)(58,108,72,94)(59,100,64,95)(60,101,65,96)(61,102,66,97)(62,103,67,98)(63,104,68,99)(73,118,82,109)(74,119,83,110)(75,120,84,111)(76,121,85,112)(77,122,86,113)(78,123,87,114)(79,124,88,115)(80,125,89,116)(81,126,90,117), (1,56,40,88)(2,57,41,89)(3,58,42,90)(4,59,43,82)(5,60,44,83)(6,61,45,84)(7,62,37,85)(8,63,38,86)(9,55,39,87)(10,123,141,91)(11,124,142,92)(12,125,143,93)(13,126,144,94)(14,118,136,95)(15,119,137,96)(16,120,138,97)(17,121,139,98)(18,122,140,99)(19,113,135,104)(20,114,127,105)(21,115,128,106)(22,116,129,107)(23,117,130,108)(24,109,131,100)(25,110,132,101)(26,111,133,102)(27,112,134,103)(28,81,54,72)(29,73,46,64)(30,74,47,65)(31,75,48,66)(32,76,49,67)(33,77,50,68)(34,78,51,69)(35,79,52,70)(36,80,53,71), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(28,31,34)(30,36,33)(38,44,41)(39,42,45)(47,53,50)(48,51,54)(55,58,61)(57,63,60)(65,71,68)(66,69,72)(74,80,77)(75,78,81)(83,89,86)(84,87,90)(91,94,97)(93,99,96)(101,107,104)(102,105,108)(110,116,113)(111,114,117)(119,125,122)(120,123,126)(127,130,133)(129,135,132)(137,143,140)(138,141,144) );

G=PermutationGroup([[(1,128,52,142),(2,129,53,143),(3,130,54,144),(4,131,46,136),(5,132,47,137),(6,133,48,138),(7,134,49,139),(8,135,50,140),(9,127,51,141),(10,39,20,34),(11,40,21,35),(12,41,22,36),(13,42,23,28),(14,43,24,29),(15,44,25,30),(16,45,26,31),(17,37,27,32),(18,38,19,33),(55,105,69,91),(56,106,70,92),(57,107,71,93),(58,108,72,94),(59,100,64,95),(60,101,65,96),(61,102,66,97),(62,103,67,98),(63,104,68,99),(73,118,82,109),(74,119,83,110),(75,120,84,111),(76,121,85,112),(77,122,86,113),(78,123,87,114),(79,124,88,115),(80,125,89,116),(81,126,90,117)], [(1,56,40,88),(2,57,41,89),(3,58,42,90),(4,59,43,82),(5,60,44,83),(6,61,45,84),(7,62,37,85),(8,63,38,86),(9,55,39,87),(10,123,141,91),(11,124,142,92),(12,125,143,93),(13,126,144,94),(14,118,136,95),(15,119,137,96),(16,120,138,97),(17,121,139,98),(18,122,140,99),(19,113,135,104),(20,114,127,105),(21,115,128,106),(22,116,129,107),(23,117,130,108),(24,109,131,100),(25,110,132,101),(26,111,133,102),(27,112,134,103),(28,81,54,72),(29,73,46,64),(30,74,47,65),(31,75,48,66),(32,76,49,67),(33,77,50,68),(34,78,51,69),(35,79,52,70),(36,80,53,71)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,25,22),(20,23,26),(28,31,34),(30,36,33),(38,44,41),(39,42,45),(47,53,50),(48,51,54),(55,58,61),(57,63,60),(65,71,68),(66,69,72),(74,80,77),(75,78,81),(83,89,86),(84,87,90),(91,94,97),(93,99,96),(101,107,104),(102,105,108),(110,116,113),(111,114,117),(119,125,122),(120,123,126),(127,130,133),(129,135,132),(137,143,140),(138,141,144)]])

176 conjugacy classes

class 1 2A2B2C3A3B3C3D4A···4L6A···6F6G···6L9A···9F12A···12X12Y···12AV18A···18R36A···36BT
order122233334···46···66···69···912···1212···1218···1836···36
size111111331···11···13···33···31···13···33···33···3

176 irreducible representations

dim111111111333
type++
imageC1C2C3C3C4C6C6C12C123- 1+2C2×3- 1+2C4×3- 1+2
kernelC42×3- 1+2C2×C4×3- 1+2C4×C36C122C4×3- 1+2C2×C36C6×C12C36C3×C12C42C2×C4C4
# reps13621218672242624

Matrix representation of C42×3- 1+2 in GL5(𝔽37)

310000
036000
00100
00010
00001
,
60000
06000
00100
00010
00001
,
10000
01000
002690
00101110
000270
,
260000
026000
00100
0026100
0036026

G:=sub<GL(5,GF(37))| [31,0,0,0,0,0,36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[6,0,0,0,0,0,6,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,26,10,0,0,0,9,11,27,0,0,0,10,0],[26,0,0,0,0,0,26,0,0,0,0,0,1,26,36,0,0,0,10,0,0,0,0,0,26] >;

C42×3- 1+2 in GAP, Magma, Sage, TeX

C_4^2\times 3_-^{1+2}
% in TeX

G:=Group("C4^2xES-(3,1)");
// GroupNames label

G:=SmallGroup(432,202);
// by ID

G=gap.SmallGroup(432,202);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-2,-3,252,512,772,1109]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^9=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

׿
×
𝔽